
Benchmarking Runtime 
Scripting Performance in 

Wasmer
Devon Hockley (University of Calgary)

Carey Williamson (University of Calgary)
April 2022

1



Overview

• Demonstrate that Wasmer[1] can be 
used to create an embedded 
scripting environment.

• Allow users to expand a program 
using any language of their choice, 
safely.

• A set of micro benchmarks to 
measure the performance of 
different techniques was created.

• A Web Caching Policy simulator was 
created as a realistic benchmark.

2



What Is Web Assembly?

• Created by W3C and the ByteCode
Alliance

• Designed to provide a sandboxed, 
polyglot environment in web 
browsers for high performance 
code.

• Can interoperate with JavaScript to 
access DOM and perform browser 
operations. 

3



How Does WebAssembly Work?

WebAssembly Text Format

• WASM Bytecode is a low level language 
based on stack machines.

• No garbage collection or classes.
• Modules that contain Functions.
• 4 primitive types: i32, i64, f32, f64
• Languages compile to an intermediary 

WASM bytecode.
• Bytecode is JIT-compiled to native by a 

WASM Virtual Machine.

4



• Wasmtime[2]

• Reference implementation created by BytecodeAlliance.
• Cranelift compiler backend, created as an alternative to LLVM written in Rust 

that currently displays much faster compilation speeds, but slower final code.
• Superseded older Lucet runtime by the same developers.

• Wasmer [3]

• Independent Implementation created by Wasmer Inc. 
• Supports multiple JIT backends, including Cranelift and LLVM.

Existing WASM Implementations

5



WASM outside the browser

• Lunatic [4]

• Runtime built on top of Wasmtime or Wasmer.
• Similar functionality to Erlang[5]/BEAM Virtual Machine.
• Optimized for high concurrency, high reliability tasks.
• Many small virtual processes that are isolated, so if one fails or crashes the rest of 

the program will keep going and that process can be restarted.
• E.g. 1 virtual process per incoming HTTP request, each one mapping to a WASM call.

• Veloren [9]

• Open source 3D game written in Rust.
• Uses WASM to allow user written code to be added without recompiling the game.
• WASM plugins are written using an event-driven architecture, with the host game 

dispatching events to handlers in the WASM plugin.

6



Previous Benchmarking

• Researchers from the University of Massachusetts Amherst found[6]

up to a 2.5x performance penalty when comparing the SPEC 
benchmark between native and running through WebAssembly, but 
this was only tested using WASM implementations in the browser.

• This benchmark was also focused on a long-running program, not 
many short functions.

• To the best of our knowledge, there are no academic attempts at 
benchmarking WASM implementations outside of the browser.

7



Our Benchmarks

• Previous benchmarks targeted long-running executions, evaluating 
the performance of a program that has been moved into WASM in its 
entirety.

• WASM also has applications that want to run many small functions, 
that are provided by the user.

• We want to explore the performance characteristics of making many 
small WASM function calls, instead of few long running ones, such as 
in event driven systems like Lunatic and Veloren.

8



Experimental Methodology

9



Micro Benchmarks

• Use Wasmer to create a Benchmark 
program in Rust.

• Benchmarks test various methods 
of calling into WebAssembly from 
the host program.

• Rusts correctness features, 
performance and low level memory 
control make it well suited to 
writing the benchmark program.

• Modules also written in Rust since it 
has a very mature WASM backend 
through LLVM.

10



Experimental Factors
• 3 Module Application Binary Interfaces 

(ABI) were created, Pair, Bytemuck and 
Bincode.

• For all 3 ABIs, the performance change 
caused by caching the references to the 
compiled code was measured.

• For Pair, an additional factor where we 
tested how the arguments were loaded 
was added.

• An additional caching type was tried for 
Pair called Self Referential Struct (SRS). This 
is a different style of caching, needed for 
object oriented style programming.

• For Bytemuck, both static and dynamic 
memory were tested. Bincode requires 
dynamic memory.

• Each of these combinations is tested in 1 
run of the program, in sequence.

11

Test ABI Cached Loading SRS Memory

1 Pair No Hotload

2 Pair No Preload

3 Pair Yes Hotload No

4 Pair Yes Preload No

5 Pair Yes Hotload Yes

6 Pair Yes Preload Yes

7 Bincode No Dynamic

8 Bincode Yes Dynamic

9 Bytemuck No Dynamic

10 Bytemuck Yes Dynamic

11 Bytemuck No Static

12 Bytemuck Yes Static



Experimental Factors

• These tests were done in both Debug 
and Release mode.

• These tests were also run against 3 
different JIT backends for Wasmer: 

• Singlepass: Created by Wasmer, favors fast 
compile times over optimized output.

• Cranelift: Alternative to LLVM written in 
Rust, limited optimizations available but 
compile code faster.

• LLVM: Created by LLVM Project, full 
compiler backend with many 
optimizations.

12



Pair ABI

• Method is invoked directly, 
passing data as normal 
arguments.

• Extremely simple to 
implement, just requires one 
annotation to prevent symbol 
mangling.

• Limited to native types 
(i32,i64, f32,f64)

13



Bincode ABI

• Copies data into the modules 
memory, then invokes the method, 
passing a pointer and length as 
arguments.

• Memory management and 
transmutation code are unsafe, and 
must be checked for soundness.

• Encoded using Bincode[7] binary 
encoding, similar to Protocol Buffers 
(ProtoBuff).

• Capable of using any type that can 
be represented as Bincode, not just 
primitives.

14



Bytemuck ABI

• Same process as Bincode, copying 
data into modules memory, then 
invoking method with pointer.

• Instead passes data as C-style 
struct, using Bytemuck[8] to check 
memory alignment.

• Static implementation slightly 
simpler, but still uses unsafe code. 

• Can use any type that can be 
represented as a C-struct.

15



Macro Benchmark

• Created a Web Caching Policy 
Simulator using similar 
architecture to the Micro 
Benchmark program.

• Certain factors were skipped, 
such as dynamic memory in the 
case of Bytemuck, due to 
performing strictly worse.

• 4 policies were tested: FIFO, LRU, 
LFU, and GD-SIZE

16



Experimental Results

17



Micro Benchmark - Singlepass

• The cached variant performed 
better than the non-cached one 
for all implementations.

• Bytemuck and Bincode performed 
similarly, but Bytemuck has the 
additional optimization of static 
memory available for it.

• Pair performed the best across the 
board, although it has limited use 
cases due to having to pass 
everything as arguments. For 
example, no variable length data.

18



Micro Benchmark - Cranelift

• Cranelift improves 
performance somewhat.

• Relative performance was 
similar, except for dynamic 
Bytemuck code catching up 
a bit.

• Code compilation was only 
slightly slower.

19



Micro Benchmark - LLVM

• LLVM backend did not 
improve runtime 
performance.

• Compilation speed was 
reduced drastically though.

20



Micro Benchmark - Compilation

• When JIT compilation times 
are included, Cranelift and 
Singlepass only slow by 
around 50%.

• LLVM times almost quadruple 
in the worst case.

• Likely because the code being 
compiled is very simple, so 
LLVM runs through many 
optimization runs that make 
no changes.

21

Compilation times included



Macro Benchmark

• Certain Factors were dropped for the Macro Benchmark:
• Hotload vs Preload – No difference in Release mode, likely optimized away.
• Dynamic Bytemuck – Static performed strictly better.
• Singlepass backend was dropped, as it performed strictly worse and is not 

intended for deployment.

• Self Referential Structs performed similarly to normal caching, so 
they were used for all caching instances, to better represent a real 
object oriented program where each policy is modelled as a struct.

22



Macro Benchmark

• Caching continued to perform 
better than the non-cached version.

• The gap between native and WASM 
closed by many orders of 
magnitude, implying the 
performance degradation is 
primarily caused by calls into 
WASM.

• Relative speed of each policy 
simulation was the same within 
each ABI, so WASM seems to be a 
relatively stable slowdown.

23



Macro Benchmark

• LLVM version performed 
marginally faster.

• While policy code is more 
complex, it is still very simple, 
so LLVM extra optimizations do 
not seem to have much 
impact.

• Relative performance of ABIs 
remained the same.

24



Conclusions

• WASM slowdowns are within an order of magnitude for real-world 
scripting applications.

• There are more potential options for optimization, but when 
comparing the ABI it seems that direct arguments are preferred.

• If the data is more complex, then C-struct passing with static memory 
using tools like Bytemuck is preferred.

• If Bincode or Protobuff can be adapted to work with static memory, 
than its possible these could be used as a more language 
independent alternative to C-struct, since the primary penalty they 
suffer seems to be the second call, not the parsing itself.

25



Future Work

• Investigate implementation of Wasmer, to find potential 
optimizations.

• Investigate variable length data.
• WebAssembly will eventually be capable of understanding more 

complex types using WebAssembly Type Interface, so a future work 
could compare that subsystem to this methodology.

• Perform tests against other WASM runtimes such as Wasmtime and 
WebAssembly Micro Runtime (WAMR).

• Check performance and compatibility of these techniques with other 
WASM compatible languages such as C, C++, C# and AssemblyScript.

26



Thank you!
Source Code:

https://github.com/Sonicskater/wasm-simulator

27



References
[1] W3C and Bytecode Alliance. WASM
(WebAssembly). https://webassembly.org/
[2] Wasmer. Wasmer, the universal webassembly
runtime. https://wasmer.io/
[3] Bytecode Alliance. wasmtime: Sandalone JIT-style
runtime for WebAssembly, using Cranelift.
https://github.com/bytecodealliance/wasmtime
[4] lunatic.solutions. Lunatic, erlang inspired wasm
runtime. https://lunatic.solutions/
[5] Erlang. Erlang – implementations and ports of erlang. 
https://erlang.org/faq/implementations.html
[6] A. Jangda, B. Powers, E. D. Berger, and A. Guha. Not so fast: Analyzing the performance of 
webassembly vs. native code. pages 107–120, July 2019[6]
[7] N. McCarty. Bincode. https://github.com/bincode-org/bincode/
[8] Lokathor. Bytemuck. https://docs.rs/bytemuck/latest/bytemuck/
[9] Veloren. https://gitlab.com/veloren/veloren

28

https://webassembly.org/
https://wasmer.io/
https://github.com/bytecodealliance/wasmtime
https://lunatic.solutions/
https://erlang.org/faq/implementations.html
https://github.com/bincode-org/bincode/
https://docs.rs/bytemuck/latest/bytemuck/
https://gitlab.com/veloren/veloren


29


	Benchmarking Runtime Scripting Performance in Wasmer
	Overview
	What Is Web Assembly?
	How Does WebAssembly Work?
	Existing WASM Implementations
	WASM outside the browser
	Previous Benchmarking
	Our Benchmarks
	Experimental Methodology
	Micro Benchmarks
	Experimental Factors
	Experimental Factors
	Pair ABI
	Bincode ABI
	Bytemuck ABI
	Macro Benchmark
	Experimental Results
	Micro Benchmark - Singlepass
	Micro Benchmark - Cranelift
	Micro Benchmark - LLVM
	Micro Benchmark - Compilation
	Macro Benchmark
	Macro Benchmark
	Macro Benchmark
	Conclusions
	Future Work
	Thank you!
	References
	Slide Number 29

