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Overview

• Demonstrate that Wasmer[1] can be 
used to create an embedded 
scripting environment.

• Allow users to expand a program 
using any language of their choice, 
safely.

• A set of micro benchmarks to 
measure the performance of 
different techniques was created.

• A Web Caching Policy simulator was 
created as a realistic benchmark.
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What Is Web Assembly?

• Created by W3C and the ByteCode
Alliance

• Designed to provide a sandboxed, 
polyglot environment in web 
browsers for high performance 
code.

• Can interoperate with JavaScript to 
access DOM and perform browser 
operations. 
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How Does WebAssembly Work?

WebAssembly Text Format

• WASM Bytecode is a low level language 
based on stack machines.

• No garbage collection or classes.
• Modules that contain Functions.
• 4 primitive types: i32, i64, f32, f64
• Languages compile to an intermediary 

WASM bytecode.
• Bytecode is JIT-compiled to native by a 

WASM Virtual Machine.
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• Wasmtime[2]

• Reference implementation created by BytecodeAlliance.
• Cranelift compiler backend, created as an alternative to LLVM written in Rust 

that currently displays much faster compilation speeds, but slower final code.
• Superseded older Lucet runtime by the same developers.

• Wasmer [3]

• Independent Implementation created by Wasmer Inc. 
• Supports multiple JIT backends, including Cranelift and LLVM.

Existing WASM Implementations
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WASM outside the browser

• Lunatic [4]

• Runtime built on top of Wasmtime or Wasmer.
• Similar functionality to Erlang[5]/BEAM Virtual Machine.
• Optimized for high concurrency, high reliability tasks.
• Many small virtual processes that are isolated, so if one fails or crashes the rest of 

the program will keep going and that process can be restarted.
• E.g. 1 virtual process per incoming HTTP request, each one mapping to a WASM call.

• Veloren [9]

• Open source 3D game written in Rust.
• Uses WASM to allow user written code to be added without recompiling the game.
• WASM plugins are written using an event-driven architecture, with the host game 

dispatching events to handlers in the WASM plugin.
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Previous Benchmarking

• Researchers from the University of Massachusetts Amherst found[6]

up to a 2.5x performance penalty when comparing the SPEC 
benchmark between native and running through WebAssembly, but 
this was only tested using WASM implementations in the browser.

• This benchmark was also focused on a long-running program, not 
many short functions.

• To the best of our knowledge, there are no academic attempts at 
benchmarking WASM implementations outside of the browser.
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Our Benchmarks

• Previous benchmarks targeted long-running executions, evaluating 
the performance of a program that has been moved into WASM in its 
entirety.

• WASM also has applications that want to run many small functions, 
that are provided by the user.

• We want to explore the performance characteristics of making many 
small WASM function calls, instead of few long running ones, such as 
in event driven systems like Lunatic and Veloren.
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Experimental Methodology
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Micro Benchmarks

• Use Wasmer to create a Benchmark 
program in Rust.

• Benchmarks test various methods 
of calling into WebAssembly from 
the host program.

• Rusts correctness features, 
performance and low level memory 
control make it well suited to 
writing the benchmark program.

• Modules also written in Rust since it 
has a very mature WASM backend 
through LLVM.

10



Experimental Factors
• 3 Module Application Binary Interfaces 

(ABI) were created, Pair, Bytemuck and 
Bincode.

• For all 3 ABIs, the performance change 
caused by caching the references to the 
compiled code was measured.

• For Pair, an additional factor where we 
tested how the arguments were loaded 
was added.

• An additional caching type was tried for 
Pair called Self Referential Struct (SRS). This 
is a different style of caching, needed for 
object oriented style programming.

• For Bytemuck, both static and dynamic 
memory were tested. Bincode requires 
dynamic memory.

• Each of these combinations is tested in 1 
run of the program, in sequence.
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Test ABI Cached Loading SRS Memory

1 Pair No Hotload

2 Pair No Preload

3 Pair Yes Hotload No

4 Pair Yes Preload No

5 Pair Yes Hotload Yes

6 Pair Yes Preload Yes

7 Bincode No Dynamic

8 Bincode Yes Dynamic

9 Bytemuck No Dynamic

10 Bytemuck Yes Dynamic

11 Bytemuck No Static

12 Bytemuck Yes Static



Experimental Factors

• These tests were done in both Debug 
and Release mode.

• These tests were also run against 3 
different JIT backends for Wasmer: 

• Singlepass: Created by Wasmer, favors fast 
compile times over optimized output.

• Cranelift: Alternative to LLVM written in 
Rust, limited optimizations available but 
compile code faster.

• LLVM: Created by LLVM Project, full 
compiler backend with many 
optimizations.
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Pair ABI

• Method is invoked directly, 
passing data as normal 
arguments.

• Extremely simple to 
implement, just requires one 
annotation to prevent symbol 
mangling.

• Limited to native types 
(i32,i64, f32,f64)
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Bincode ABI

• Copies data into the modules 
memory, then invokes the method, 
passing a pointer and length as 
arguments.

• Memory management and 
transmutation code are unsafe, and 
must be checked for soundness.

• Encoded using Bincode[7] binary 
encoding, similar to Protocol Buffers 
(ProtoBuff).

• Capable of using any type that can 
be represented as Bincode, not just 
primitives.
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Bytemuck ABI

• Same process as Bincode, copying 
data into modules memory, then 
invoking method with pointer.

• Instead passes data as C-style 
struct, using Bytemuck[8] to check 
memory alignment.

• Static implementation slightly 
simpler, but still uses unsafe code. 

• Can use any type that can be 
represented as a C-struct.
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Macro Benchmark

• Created a Web Caching Policy 
Simulator using similar 
architecture to the Micro 
Benchmark program.

• Certain factors were skipped, 
such as dynamic memory in the 
case of Bytemuck, due to 
performing strictly worse.

• 4 policies were tested: FIFO, LRU, 
LFU, and GD-SIZE
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Experimental Results
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Micro Benchmark - Singlepass

• The cached variant performed 
better than the non-cached one 
for all implementations.

• Bytemuck and Bincode performed 
similarly, but Bytemuck has the 
additional optimization of static 
memory available for it.

• Pair performed the best across the 
board, although it has limited use 
cases due to having to pass 
everything as arguments. For 
example, no variable length data.
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Micro Benchmark - Cranelift

• Cranelift improves 
performance somewhat.

• Relative performance was 
similar, except for dynamic 
Bytemuck code catching up 
a bit.

• Code compilation was only 
slightly slower.
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Micro Benchmark - LLVM

• LLVM backend did not 
improve runtime 
performance.

• Compilation speed was 
reduced drastically though.
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Micro Benchmark - Compilation

• When JIT compilation times 
are included, Cranelift and 
Singlepass only slow by 
around 50%.

• LLVM times almost quadruple 
in the worst case.

• Likely because the code being 
compiled is very simple, so 
LLVM runs through many 
optimization runs that make 
no changes.
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Macro Benchmark

• Certain Factors were dropped for the Macro Benchmark:
• Hotload vs Preload – No difference in Release mode, likely optimized away.
• Dynamic Bytemuck – Static performed strictly better.
• Singlepass backend was dropped, as it performed strictly worse and is not 

intended for deployment.

• Self Referential Structs performed similarly to normal caching, so 
they were used for all caching instances, to better represent a real 
object oriented program where each policy is modelled as a struct.
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Macro Benchmark

• Caching continued to perform 
better than the non-cached version.

• The gap between native and WASM 
closed by many orders of 
magnitude, implying the 
performance degradation is 
primarily caused by calls into 
WASM.

• Relative speed of each policy 
simulation was the same within 
each ABI, so WASM seems to be a 
relatively stable slowdown.
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Macro Benchmark

• LLVM version performed 
marginally faster.

• While policy code is more 
complex, it is still very simple, 
so LLVM extra optimizations do 
not seem to have much 
impact.

• Relative performance of ABIs 
remained the same.
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Conclusions

• WASM slowdowns are within an order of magnitude for real-world 
scripting applications.

• There are more potential options for optimization, but when 
comparing the ABI it seems that direct arguments are preferred.

• If the data is more complex, then C-struct passing with static memory 
using tools like Bytemuck is preferred.

• If Bincode or Protobuff can be adapted to work with static memory, 
than its possible these could be used as a more language 
independent alternative to C-struct, since the primary penalty they 
suffer seems to be the second call, not the parsing itself.
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Future Work

• Investigate implementation of Wasmer, to find potential 
optimizations.

• Investigate variable length data.
• WebAssembly will eventually be capable of understanding more 

complex types using WebAssembly Type Interface, so a future work 
could compare that subsystem to this methodology.

• Perform tests against other WASM runtimes such as Wasmtime and 
WebAssembly Micro Runtime (WAMR).

• Check performance and compatibility of these techniques with other 
WASM compatible languages such as C, C++, C# and AssemblyScript.

26



Thank you!
Source Code:

https://github.com/Sonicskater/wasm-simulator
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