
CTT: Load Test Automation for TOSCA-based Cloud Applications
Thomas F. Düllmann
University of Stuttgart

Germany

André van Hoorn
University of Hamburg

Germany

Vladimir Yussupov
University of Stuttgart

Germany

Pelle Jakovits
University of Tartu

Estonia

Mainak Adhikari
Indian Institute of Information

Technology Lucknow
India

ABSTRACT
Despite today’s fast and rapidmodeling and deployment capabilities
to meet customer requirements in an agile manner, testing is still
of utmost importance to avoid outages, unsatisfied customers, and
performance problems. To tackle such issues, (load) testing is one
of several approaches. In this paper, we introduce the Continuous
Testing Tool (CTT), which enables the modeling of tests and test
infrastructures along with the cloud system under test, as well as
deploying and executing (load) tests against a fully deployed system
in an automated manner. CTT employs the OASIS TOSCA Standard
to enable end-to-end support for continuous testing of cloud-based
applications. We demonstrate CTT’s workflow, its architecture, as
well as its application to DevOps-oriented load testing and load
testing of data pipelines.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering → Software testing and debugging;
System modeling languages; • General and reference → Perfor-
mance.

KEYWORDS
continuous testing, continuous integration, TOSCA, agile, DevOps
ACM Reference Format:
Thomas F. Düllmann, André van Hoorn, Vladimir Yussupov, Pelle Jakovits,
and Mainak Adhikari. 2022. CTT: Load Test Automation for TOSCA-based
Cloud Applications. In Companion of the 2022 ACM/SPEC International
Conference on Performance Engineering (ICPE ’22 Companion), April 9–13,
2022, Bejing, China.

1 INTRODUCTION
Testing is the prevalent quality assurance technique in practice.
Being an essential part of the software development lifecycle, test-
ing plays one of the key roles in the RADON framework [1, 2],
which provides a model-based software development ecosystem

Preprint to appear in Companion of ACM/SPEC ICPE 2022.

for cloud applications. RADON bundles a set of tools for applica-
tion modeling, deployment, quality assurance, and operations that
utilize the Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) standard by OASIS [3]. For quality assurance,
RADON includes the continuous testing workflow [4] that partic-
ularly aims to support software developers, QoS engineers, and
release managers in producing high-quality applications. The core
component implementing the continuous testing workflow is the
Continuous Testing Tool (CTT), which provides the functionalities
for defining, generating, and executing continuous tests of appli-
cation functions, data pipelines [5], and microservices, as well as
for reporting test results. These results provide further information
about the outcome of the tests. CTT employs the TOSCA standard
to extend RADON by end-to-end support for continuous testing of
microservice-based (including serverless [6] components hosted
using Function-as-a-Service (FaaS) offerings) and data pipeline ap-
plications in DevOps [7].

CTT is the first tool of its kind that supports the whole workflow
— from test specification over execution and reporting — that is also
extensible to custom needs, e.g., integration of other types of tests or
tools. CTT and its respective TOSCA types allow the specification
of tests within the model. During the modeling phase, tests can
be attached to the respective applications, providing developers a
good overview and self-contained artifacts.

This paper presents a concise summary of CTT and selected
application scenarios. In particular, this paper (i) outlines the CTT
tool’s architecture and integration into the RADON workflow and
tool ecosystem, (ii) presents the tool’s extension points, (iii) and
shows selected applications of CTT to DevOps-oriented FaaS/micro-
services load testing and data pipeline load testing. This paper is
based on the cited technical deliverables (particularly, [8] and [9]),
to which we refer for further reference.

2 BACKGROUND: TOSCA AND RADON
TOSCA [3] is a YAML-based standard by OASIS for describing cloud
application deployments in a vendor- and technology-agnostic man-
ner. TOSCA enables modelers to specify so-called Service Templates
that describe desired application topologies— i.e., components and
their relationships— of an application to be deployed to a cloud
infrastructure. The core modeling constructs in TOSCA are Node
and Relationship Types: the former describe distinct component
types such as "Relational Database" or "Web Server", whereas the
latter represent types of relations among them, e.g., "Hosted On" or
"Connects To". Each Node or Relationship Type can be instantiated
in Service Templates in a form of Node or Relationship Templates to



Figure 1: TOSCA model with RADON extensions in GMT

represent concrete application component instances, e.g., a MySQL
database hosted on a Ubuntu virtual machine. Moreover, TOSCA
introduces so-called Policy Types for modeling non-functional re-
quirements that can be associated with application components.

RADON [1] is a DevOps framework building on top of TOSCA
with a specific focus on cloud applications using microservices,
FaaS, and data pipelines. While in principle TOSCA models can be
edited in any text editor, the RADON framework also provides a
web-based graphical modeling tool (GMT) based on EclipseWinery1
for more convenient modeling of TOSCA application topologies.
Resulting TOSCA models can be processed by TOSCA-compliant
orchestrators, which are responsible for the automated deployment
and management of the specified application topologies. One such
orchestrator is xOpera2. RADON extends the TOSCA modeling
capabilities and tools (particularly Winery/GMT and xOpera), and
adds additional tools to form a respective ecosystem. Figure 1 shows
a TOSCA topology for a FaaS-based application modeled in GMT
also containing the newly developed RADON TOSCA types. All
tools of the RADON ecosystem are integrated in the RADON Inte-
grated Development Environment (IDE) which is a development
environment based on Eclipse Che3. The RADON software ecosys-
tem is publicly available on GitHub [2].

3 RELATEDWORK
CTT is a model-driven and TOSCA-based software testing approach
with a focus on DevOps-oriented load testing of cloud applications.

Model-based quality assurance of TOSCA-based cloud applications
While there are other tools for quality assurance in general and
for using TOSCA entities for specifying test properties [10], there
are none that allow continuous testing in TOSCA and the RADON
ecosystem [11]. RADON itself provides several other quality assur-
ance tools in its ecosystem: Decomposition Tool, Defect Prediction
Tool, and Verification Tool. The Decomposition Tool shares some
performance modeling concepts with CTT.

DevOps-oriented load testing In contrast to regular software test-
ing, load testing [12] ensures that the behavior of an application is
as expected, even under high load, e.g., high number of concurrent
users or number of concurrent requests, etc. Despite CTT being a
tool for (load) testing, its purpose is not to add another (load) testing

1Eclipse Winery – https://eclipse.org/winery/
2xOpera – https://github.com/xlab-si/xopera-opera
3Eclipse Che – https://www.eclipse.org/che/

tool in itself, but to provide the framework to use existing and es-
tablished tools like JMeter4, Gatling5, etc. in the context of TOSCA
deployments. Also, approaches and tools developed specifically for
load testing in DevOps can be integrated into CTT, e.g., following
approaches for automating load testing in continuous software
engineering [13] and insights from performance practitioners in
DevOps [14]. CTT itself provides a framework for setting up the
environment for different testing scenarios while the mentioned
approaches [13, 14] provide testing strategies. We will cover this
topic also in Section 6.

4 CONTINUOUS TESTING TOOL
This section describes the workflow, architecture, modeling, and
extension points of the Continuous Testing Tool (CTT).

4.1 Workflow
CTT’S continuous testing workflow comprises three usage scenar-
ios (US), namely Define Test Cases (US 1), Execute Test Cases (US 2),
andMaintain Test Cases (US 3). which are overviewed in Figure 2(a),
and detailed in Figure 2(b) to Figure 2(d).

The three usage scenarios can be summarized as follows:
Define Test Cases (US 1). In parallel to the regular development,

the Software Developer or QoS Engineer can define test specifica-
tions (e.g., deployment and load tests) for their application, referred
to as the system under test (SUT). The definition of test specifi-
cations is done via the RADON IDE by adding respective TOSCA
Policy Types to the SUT’s Service Template as described in Sec-
tion 4.3. Moreover, the developer defines an additional Service
Template for the test infrastructure (TI). The resulting artifacts,
comprising the SUT’s and TI’s executable TOSCA artifacts (CSAR)
files and input definitions, can be exported from the RADON IDE.
Figure 2(b) shows an activity diagram for the usage scenario.

Execute Test Cases (US 2). During development or before deploy-
ing to production, actors such as the Developer or Release Manager
can manually trigger the execution via the RADON IDE or the stan-
dalone interface or automatically via continuous integration (CI)
or continuous delivery (CD) [15] for integration into DevOps pro-
cesses. In each case, the Continuous Testing Tool conducts a series
of steps for each selected test case, namely preparing the project
context, generating the executable artifacts (CSARs), deploying
the SUT and the TI via the orchestrator, executing the tests, and
collecting the results. Afterwards, the test results can be inspected.
Figure 2(c) shows an activity diagram for the usage scenario.

Maintain Test Cases (US 3). Once the application is deployed in a
production environment, operational data can be used for reporting,
refining, generating new tests, or updating the existing tests as
presented in Section 3 and Section 6, to fit into DevOps contexts and
constraints, such as evolving system usage and limited test budgets
in CI/CD. Even though different approaches for maintaining test
cases are provided in the continuous testing workflow, they share
a similar process of analyzing the intended user request, querying
the monitoring tool for the required monitoring data, and providing
the generated/refined test artifacts. Figure 2(d) shows an activity
diagram for the usage scenario.
4Apache JMeter – https://jmeter.apache.org/
5Gatling – https://gatling.io/

https://eclipse.org/winery/
https://github.com/xlab-si/xopera-opera
https://www.eclipse.org/che/
https://jmeter.apache.org/
https://gatling.io/


Define Test Cases
(US 1)


Execute Test Cases
(US 2)


Maintain Test Cases
(US 3)


(a) Overview of Usage Scenarios

Define Test Cases (US 1)

SUT-
Inputs.yml

SUT.csar

TI-
Inputs.yml

TI.csar

Model tests for SUT

Select and refine TI

TI Service
Template

SUT Service
Template

(b) Usage Scenario 1

SUT-
Inputs.yml

SUT.csar

TI-Inputs.yml

TI.csar

Execute Test Cases (US 2)

IDE

CTT Server

CTT
CLI

Orchestrator

Start tests via
CTT IDE Plugin

Execute 

CTT

Start tests 

via CLI

Execute 

CTT

Execution
(stand-alone 


or CI/CD)


Deploy SUT 

and TI

Collect 

test results

Start test

Create

Artifacts

Create/update 

CTT Project

Execute
CTT

Deploy SUT
Deploy TI


done?

y

n

Test results

Test
configuration

(c) Usage Scenario 2

Maintain Test Cases (US 3)

CTT Operational Feedback

Monitoring Tool
Provide

requested
operational


data


Analyze
user

request


Generate/
Refine

Test Artifacts
Test 

artifacts

Test artifacts
(new/updated)


(d) Usage Scenario 3

Figure 2: CTT Usage Scenarios

4.2 Architecture
Figure 3 depicts the overall architecture of CTT and the external
components and tools from the RADON ecosystem it makes use of.
Tests and test infrastructures are defined in TOSCA models, using
CTT-based (extensible) modeling types (as detailed in Section 4.3),
e.g., supporting performance or deployment tests. The CTT server
is responsible for managing the test execution workflow, including
the generation of executable TOSCA models, the deployment of
the test infrastructure (TI) and the system under test (SUT) using
the xOpera (SaaS) orchestrator, running the tests via CTT test
agents, as well as collecting and providing the test results. A CTT
agent executes the actual test, e.g., a load test with a load driver
such as JMeter. The RADON IDE (including RADON GMT) can
be used to define the test-related information, such as the tests
and the TIs, and to interact with the CTT server via the CTT IDE
plugin. CTT CLI provides an alternative command-line interface
to interact with the CTT server. CTT CLI is the preferred way

Cloud Platform

SUT

initiate deployment

deploy

xOpera SaaS

Production
System

CTT Server





CTT Agent Module

TI











CTT Agent
Test Driver

Driver Agents

Monitoring

CI/CD

CTT 

Operational Feedback


query operational data

CTT CLI

RADON IDE

GMT
CTT Plugin

execute CTT workflow

ContinuITy PPTAM

TOSCA models
and artifacts

CTT 

modeling 


types

configure, 

execute, 


retrieve results


RADON Tool

CTT Component

Application

Figure 3: CTT Architectural Overview

to use CTT in CI/CD pipelines. Moreover, CTT provides various
approaches for generating and updating load tests from operational
data, particularly to obtain tailored tests for microservices, FaaS,
and data pipelines. Therefore, it interfaces with a monitoring tool,
such as the one included in the RADON ecosystem.

4.3 CTT TOSCA Modeling
CTT relies on TOSCA modeling concepts to augment the TOSCA
models of the SUT as well as to define the TI. Therefore, we have
defined a CTT-specific modeling type hierarchy. Test case types are
modeled using TOSCA Policy Types. Reusable component types
for the test infrastructures, e.g., test drivers, are modeled as TOSCA
Node Types. Reusable test infrastructures are provided as blueprints,
which essentially are ready-to-deploy sets of TOSCAmodels. CTT’s
type hierarchy is integrated into RADON’s modeling profile [16].
The CTT types are implemented in RADON Particles, which is
the RADON template library containing reusable definitions and
extensions, in this case, for testing. Following the RADON mod-
eling approach [16], we provide abstract (AEML) and deployable
modeling entities (DEML).

CTT Policy types. The class diagram in Figure 4(b) shows CTT’s
Policy Type hierarchy. The (abstract) parent type of any CTT test
type and test case is Test. The type includes a reference to a CTT TI
blueprint and a test identifier as attributes. As detailed below, the
blueprint is a TOSCA Service Template defining the infrastructure
that executes the test. The Policy Types PingTest and HttpEnd-
PointTest are concrete Policy Types that can be used to define de-
ployment test cases of an SUT to test whether they respond to
requests on different protocol levels. The type hierarchy includes
another (abstract) Policy Type for load tests, namely LoadTest. Ex-
ample concrete Policy Types for load tests include those for the
JMeter (JMeterLoadTest), Apache Bench (ABLoadTest), and Locust
(LocustLoadTest) tools. As detailed for JMeterLoadTest, the test cases
include attributes such as a reference to a load test script and addi-
tional properties. Additional types are available and can be added
at the places indicated by “...” on the diagram.

CTT Node types. The (abstract) parent of any test infrastruc-
ture Node Type is CTTAgent, which derives from RADON’s type



(a) CTT Node Types

(b) CTT Policy Types

(c) JMeterMasterOnly blueprint as shown in GMT

Figure 4: CTT Modeling

for Docker applications (DockerApplication). The class diagram in
Figure 4(a) shows CTT’s Node Type hierarchy.

Currently, CTT’s Node Type hierarchy includes Node Types for
executing deployment tests and load tests. The concrete Node Type
(DeploymentTestAgent) is able to execute deployment tests such as
the previously introduced PingTest and HttpEndPointTest. The type
LoadTestAgent is abstract and serves as the basis for concrete Node
Types for representing agents for load testing tools such as JMeter
(JMeter), Apache Bench (AB), and Locust (Locust), corresponding
to the respective Policy Types introduced before. As exemplified
for JMeter, the Node Type includes attributes such as additional
configuration properties or the list of worker nodes (for high-scale
load test experiments). Moreover, the Node Types require an imple-
mentation artifact so that CTT can trigger the deployment of the
respective node in the test infrastructure via the orchestrator. More
types are available and can be added at the places indicated by “...”.

CTT Blueprints. CTT provides a set of TI blueprints, i.e., TOSCA
Service Templates that represent the test infrastructure needed to
execute the modeled tests. For example, the blueprint JMeterMas-
terOnly is a TOSCA Service Template that comprises the JMeter
Node Type deployed on a Docker engine (DockerEngine) hosted on
a workstation (Workstation), where both DockerEngine and Work-
station are Node Types already available in RADON Particles. For
the JMeter case, various other blueprints are possible, particularly
a JMeter master/slave setting with several agents enabling a load
test with higher workload intensity. Figure 4(c) shows the JMeter-
MasterOnly blueprint in GMT.

4.4 Extensibility
While CTT contains a range of modules and features out-of-the-
box, it has been designed to be extensible to custom test types and
test agents, e.g., load generators.
• New test types and test tools are defined by adding or refining
(extending) CTT’s TOSCA Policies, Node Types, and Service
Templates in RADON’s TOSCA modeling type hierarchy and
by providing Ansible deployment artifacts.

• The CTT server must be extended by adding a new server
module that is able to interpret the new test Policies and to
communicate with a suitable test agent, which essentially wraps
the actual test tool (e.g., load generator). The CTT test agent
may be an existing one for an existing tool or a newly developed
one for new test tools.

• As the server and the test agent communicate via a REST API,
both parts can be replaced or extended accordingly, while the
APIs of both sides need to be in sync.

The respective extension points in the CTT architecture are de-
scribed in detail in CTT’s technical documentation [8, 9]. The
CTT data pipeline module, as described in Section 7 makes use
of CTT’s extension points. CTT has only a limited dependency
on the RADON ecosystem. It only depends on the TOSCA models
used for specifying SUT, TI, as well as the testing configuration as
TOSCA policies. Therefore, CTT can most likely be integrated into
other frameworks.

5 VALIDATION
The lab validation efforts related to CTT were two-fold: (i) func-
tional validation of the CTT tool implementation including the
integration with other RADON tools; (ii) quantitative validation
of novel approaches for continuous testing. The remainder of this
section provides an overview of the functional lab validation activi-
ties. As a combination of (i) and (ii), we demonstrate quantitative
results of using CTT in combination with the developed approach
for domain-based scalability analysis in Section 6.

The overall goal of the functional validation was to exercise
the feasibility of the continuous testing workflow and its imple-
mentation by CTT in combination with the related RADON tools.
The functional lab validation was conducted using the following
RADON microservices/FaaS demo applications: Thumbnail genera-
tion, SockShop, and TODOListAPI as SUTs:
• ThumbnailGenerator6 The application demonstrates the usage
of FaaS (Function-as-a-Service), comprising two Amazon S3
buckets and an Amazon Lambda function. Once an image file is
uploaded to the first bucket, the function is triggered, creating
a thumbnail version of the uploaded image and saving it to the
second bucket.

• SockShop7 A shop system implemented with DevOps and mi-
croservice concepts in mind. Researchers have identified the
SockShop as a suitablemicroservices benchmark application [17].

• TODOList-API8 A ToDo-list application based on FaaS features,
comprising a set of Amazon Lambda functions and a MongoDB
database.

6https://github.com/radon-h2020/demo-faas-thumbnail-generator-python
7https://github.com/microservices-demo/microservices-demo
8https://github.com/iaas-splab/todo-api-nodejs

https://github.com/radon-h2020/demo-faas-thumbnail-generator-python
https://github.com/microservices-demo/microservices-demo
https://github.com/iaas-splab/todo-api-nodejs


We have conducted a corresponding validation with use cases
from industrial partners involved in the project. For each SUT, we
defined test cases by adding CTTmodeling annotations (via TOSCA
Policies) to the SUT’s TOSCA model. Regarding test types, we fo-
cused on deployment tests and load tests, covering scenarios for
microservices (SockShop), FaaS (Thumbnail and TODOListAPI),
and data pipelines (Thumbnail generation and File Transfer be-
tween different Cloud Storage).

Apart from modeling, the validation per SUT comprised the de-
ployment and execution of the tests using the exported CSAR of the
SUT and TI. Overall, we were able to demonstrate the realization
of a continuous testing workflow that comprises the modeling of
testing-related information using GMT and the CTT-related types
from RADON particles in GMT, as well as letting CTT process the
models exported from GMT including the deployment using the
xOpera orchestrator, the execution using a CTT agent, as well as
making the results available via CTT. Moreover, we could demon-
strate the feasibility of using CTT from the RADON IDE via the
CTT plugin, as well as using CTT as a standalone tool and via the
CI/CD setting using CTT’s command-line interface.

The results show evidence about CTT’s feature support based
on applying CTT with three applications. CTT is able to express
and execute different test types, namely deployment, load, and data
pipeline tests. Regarding load testing tools, CTT fully supports
JMeter (for microservices/FaaS and data pipelines) and NiFi, and
additional modeling concepts for Locust. CTT’s extension mecha-
nisms turned out to be very useful. The mechanisms have been used
to implement both CTT’s core features and external extensions,
e.g., for the data pipeline testing (Section 7).

We have used the RADON demo applications from the very
beginning of the CTT development, which turned out to be ex-
tremely useful for validating the conceptual workflow, deriving
tool requirements, defining the architecture, as well as developing
and validating the implementation — including its integration with
other tools. Moreover, the resulting artifacts served as regression
tests that were executed as part of CTT’s CI/CD pipeline. It also
turned out to be very useful that other partners have used CTT
using the example use cases, e.g., for adjusting the setups to the
industrial use cases. Regarding the deployment environments for
the tests, we have started with local deployments and have incre-
mentally added cloud-based deployment, particularly for AWS.

The artifacts for the mentioned validation using the three bench-
mark applications are provided as reusable artifacts (Appendix A).
The respective SUT models are also included in the RADON parti-
cles along with a set of reusable TI models.

6 USING CTT FOR DEVOPS-ORIENTED LOAD
TESTING

In the context of the activities around CTT, we have developed
novel approaches for continuous testing of performance-related
properties to be used in the DevOps context. The approaches are
aligned with our vision of automating representative load testing
in continuous software engineering [13] and the findings of an
industry survey [14].

Key characteristics of the approaches are: (i) Inclusion of opera-
tional profile data on system usage in the production environment.

(ii) Inclusion of architectural knowledge obtained from produc-
tion monitoring data. (iii) Option to rely on (semi-)automatically
extracted and evolved test scripts. (iv) Selecting and prioritizing rel-
evant test cases with a focus on representativeness. (v) Automation
in executing tests.

The developed approaches are microservice-tailored workload
generation [18], context-tailored workload generation [19], domain-
based scalability testing [20]. In the remainder of this section, we
will focus on the latter approach. Details about the integration of
all approaches can be found in the CTT technical delivery [9].

CTT Integration with Domain-based Scalability Analysis and PPTAM.
Assessing the performance of architecture deployment configura-
tions — e.g., with respect to deployment alternatives — is challeng-
ing and must be aligned with the system usage in the production
environment. We introduced an approach [20] for using operational
profiles to generate load tests to automatically assess scalability
pass/fail criteria of microservice configuration alternatives. The
approach provides a domain-based metric for each alternative that
can, for instance, be applied to make informed decisions about
the selection of alternatives and to conduct production monitoring
regarding performance-related system properties.

The first step is the collection of data about the system’s oper-
ational profile, which can be obtained from common APM tools
[HHM+17]. The operational data of interest are time series of work-
load intensities, e.g., number of concurrent sessions, request rates
to microservices or functions. This operational data is transformed
into an empirical distribution of workload situations, which essen-
tially models the probability of occurrence of the respective work-
load levels, e.g., 200-400 requests per second in 4% of the time. In par-
allel, the assumption is that load test scripts are (semi-)automatically
created and evolved using the established approaches [21, 22]. The
extracted scripts serve as load test templates, which are parame-
terized by the respective workload level to be tested. The load test
tool handles the execution of the test series, comprising the loop of
deploying the SUT and the TI, the actual load test execution, and
the data collection. Finally, the domain-based metric is calculated
from the test results and visually presented in a dashboard.

In this section, we present selected results of using CTT together
with the developed research approach for domain-based scalabil-
ity analysis, implemented in the PPTAM tool [20]. The SUT is the
TODOListAPI demo application. The goal is to compare two con-
figurations of the SUT with respect to scalability using operational
profile data: (i) the standard configuration from the RADON parti-
cles; (ii) the standard configuration but auto-scaling being enabled
for the included DynamoDB instance. The data for this experiment
is also included in the demo resources dataset (appendix A).

Experiment setup. The load test is implemented as a param-
eterized JMeter test plan that targets the five endpoints of the
TODOListAPI, denoted as ToDo-Create, ToDo-Get-Single, ToDo-Get-
All, ToDo-Update, and ToDo-Delete. The test plan implements a
closed, session-based workload with n concurrent users iterating
through a sequence of the aforementioned endpoints with some
probabilistic branches. The JMeter test plan is integrated into the
actual test definition in the TODOListAPI’s TOSCA model. The
experiment duration is configured to be 840 seconds (14 minutes)
with a 2-minute linear ramp-up period.



For both system configurations, we configured CTT to execute a
series of tests for eleven different workload intensities (i.e., number
of users), namely 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 users. Hence,
we obtained results for 22 different experiments. We removed the
first 4 minutes and the last 2 minutes from the raw data of each
experiment to eliminate warmup and cooldown effects.

The results of the test with 1 user serve to obtain the baseline
criteria for the pass/fail criteria of the scalability assessment.

After CTT has executed successfully, the test results are imported
into the PPTAM tool. As the operational profile, we use Wikipedia
traces according to the original publication on our approach [20].

Experiment results. Figure 5(a) lists the response time (rt) and
error rate results of the baseline experiment (1 user).

Figure 5(b) depicts the response time results over the differ-
ent workload levels per endpoint and configuration. It can be ob-
served that for both configurations, the response times increase
with increasing workload intensity. The configuration without auto-
scaling performs worse than the one with auto-scaling.

Accordingly, Figure 5(c) shows the error rates per endpoint and
configuration. It is clearly visible that again the numbers increase
with increasing workload intensity and the configuration without
auto-scaling performs worse than the one with auto-scaling.

Figure 5(d) depicts the detailed domain results for the response
time pass/fail criteria. The outer polygon represents the theoreti-
cally best domain metric per workload level (black line). The inner
polygons represent the scalability of the two configurations (red
line: without auto-scaling; yellow line: with auto-scaling). It can be
observed that both configurations show degradations for increasing
load levels. Moreover, the polygon for the configuration without
auto-scaling clearly shows that the configuration performs poorly
for workload levels greater than or equal to 70 users.

The aggregated domain metric for the two configurations, being
the sum of the values per workload level, are: 0.3879 for the config-
uration without auto-scaling and 0.6630 for the configuration with
auto-scaling. Note that a value of 1.0 would be the maximum score,
representing that situation that a configuration meets the pass/fail
criteria for each workload situation and endpoint.

7 USING CTT FOR DATA PIPELINE TESTING
In addition to typical cloud services, we also extended CTT to
support the testing of data-focused cloud services in the form of data
pipeline applications, which are designed for migrating, processing,
and storing data in multi-cloud environments. RADON supports
modeling data pipelines using TOSCA which are based on either
open-source NiFi-based data flow platform or the AWS data pipeline
service. RADON data pipelines can be designed, deployed, and
managed just like any other cloud service using RADON tools and
also required testing to be available, which CTT was extended to
support. In order to test data pipeline applications (as SUT) using
CTT, the data pipeline TOSCA Service Template should be provided
or designed using RADON GMT. This SUT is then annotated with
details about which tests to execute by defining a TOSCA testing
Policy in GMT. Based on the types of tests specified in the Policy, the
TI should also be chosen (or designed), which supports deploying
the infrastructure and tools required for the respective tests (e.g.
NiFi or JMeter based TI for data pipeline tests).

Endpoint Avg. rt [ms] Stddev rt [ms] Errors [%]
ToDo-Create 197.92 33.70 0.00
ToDo-Delete 191.17 16.11 0.00
ToDo-Get-All 198.75 29.44 0.00
ToDo-Get-Single 183.25 28.89 0.00
ToDo-Update 192.56 26.30 0.00

(a) Baseline experiment results with 1 user.

(b) Response times per endpoint and configuration (w/o auto-scaling left; w/ auto-
scaling right)

(c) Failure rates per endpoint and configuration (w/o auto-scaling left; w/ auto-scaling
right)

(d) Domain metric per workload level for both configurations (w/o
auto-scaling: red line; w/ auto-scaling: yellow line)

Figure 5: Domain-based scalability results

To support the testing of data pipelines, the capabilities of the
CTTwere extendedwith a newCTT servermodule for data pipelines,
TOSCA Policy Types, a custom TI consisting of a Python Agent for
communicating with CTT server and a NiFi-based agent for gen-
erating test data for load testing of the data pipelines. In addition,
a Prometheus 9 server is used for collecting performance metrics.

9https://prometheus.io/

https://prometheus.io/


Figure 6: High-level architecture of CTT data pipeline module

The CTT data pipeline module provides support for exposing mon-
itoring data and generating metrics at the level of individual data
pipeline blocks, efficiently generating data for load testing data
pipelines, and defining and setting up corresponding test infrastruc-
tures. This is achieved by integrating the NiFi run-time (used for
hosting and executing data pipelines) directly with the Prometheus
monitoring data collection server.

CTT Data Pipeline Testing Module. A high-level architecture of
the CTT data pipeline module and its interaction with the data
pipeline application in terms of artifacts, tools, and infrastructures
is depicted in Figure 6. The main purpose of the CTT data pipeline
testing module is to provide support for exposing monitoring data
and generatingmetrics at the level of individual data pipeline blocks,
efficiently generating data for load testing, defining and setting up
corresponding test infrastructures, and collecting test result metrics.
Initially, a user defines a data pipeline test application by adding
them to a TOSCA Service Template for the SUT. The CTT data
pipeline module-specific TOSCA Node Types and Policy Types are
defined andmade publicly available in the RADON Particles GitHub
repository [23] for expressing different types of tests and TIs.

Experimental Analysis of the CTT Data Pipeline Module. To verify
that the designed CTT data pipeline module works as intended,
we apply it to evaluate the performance of two different data
pipeline applications: (i) Serverless image Thumbnail Generation:
data pipeline, which listens for images uploaded to an AWS S3
bucket, applies an AWS Lambda function to generate a thumbnail,
and stores results into another S3 bucket. (ii) File Transfer: data
pipeline which transfers uploaded files from an AWS S3 bucket into
a Google Cloud storage bucket.

We have used the CTT tool to deploy this application together
with a testing infrastructure, which generates three different types
of input files for the data pipelines: (i) Image files for the thumbnail
generation data pipeline. (ii) IoT data in the form of JSON files for
the file transfer data pipeline. (iii) Tweets in the form of CSV files
for the file transfer data pipeline.

For the image datasets, we used an INRIA Holiday dataset con-
taining 500 image groups, each group representing a distinct scene
or object [24]. For testing the File Transfer data pipeline service,

Table 1: Load testing of Thumbnail generation with CTT data
pipeline module using multiple image datasets

Dataset Images
Load
Time (ms)

Throu-
ghput

Success
Rate (%)

Avg. Proc.
Time (s)

D-1 25 25694 2.2/min 100 8.31
D-2 50 51238 1.2/min 100 14.29
D-3 100 60283 0.99/min 100 58.48

two different datasets have been used that included the Twitter
Dataset10, which consists of 100 CSV files, each containing more
than 300 tweets, and the IoT Sensor dataset, containing 100 readings
of temperature and humidity sensors, and is generated synthetically
using a modified IoSynth data generator11 in the form of JSON files.

We verify the load testing of the Thumbnail generation with the
CTT data pipeline module by using a JMeter-based data pipeline TI
which generates REST requests uploading multiple images to the
data pipeline input S3 buckets. To test the application performance,
we defined three separate size image datasets, each with a different
number of images: 25, 50, and 100. The CTT data pipeline testing
agent uploaded the images to the source S3 bucket of the data
pipeline. During load testing, we verified that the data pipeline
services still perform as expected in terms of multiple performance
metrics, i.e., load time, throughput, and processing time. Further, the
success rate of the SUT is tested by comparing the uploaded images
on the source S3 bucket with the thumbnails in the other data end-
point or destination S3 buckets. Table 1 reports the final validation
results of the Thumbnail generation data pipeline application. The
experiments demonstrated that the success rate of the Thumbnail
generation data pipeline application is 100% for all three datasets,
which shows that there were no failures.

During load testing, we verified that the data pipeline services
still perform as expected in terms of success rate and processing
time. Table 2 reports the final validation results of the File Transfer
data pipeline by using the CTT agent. Through the experiments,
it has been demonstrated that the success rate of the File Transfer

10kaggle: Twitter sentiment analysis — https://www.kaggle.com/c/twitter-sentiment-
analysis2/data
11IoSynth IoT synthetic data generator — https://github.com/Afsana2910/iosynth

https://www.kaggle.com/c/twitter-sentiment-analysis2/data
https://www.kaggle.com/c/twitter-sentiment-analysis2/data
https://github.com/Afsana2910/iosynth


Table 2: Load testing of File Transfer data pipeline between
different Cloud Storage application with CTT data pipeline
module using multiple file datasets

Dataset
Data
uploaded

Data in
destination
bucket

Success
Rate (%)

Avg.
Processing
Time (sec)

Twitter Data 100 100 100 0.47
Sensor Data 100 100 100 0.49

data pipeline is 100% for all two datasets, which indicates that there
were no failures in the data pipeline.

8 CONCLUSION
The Continuous Testing Tool provides the means for testing deploy-
ments modeled with the OASIS TOSCA standard. CTT supports
generating, executing, and refining continuous tests of application
functions, data pipelines, and microservices, as well as for report-
ing test results. While aiming to provide a general framework for
continuous quality testing in TOSCA and its RADON extension,
a particular focus of CTT lies on testing workload-related quality
attributes, such as performance, elasticity, and resource/cost effi-
ciency. Due to CTT’s modular architecture, it can be extended and
customized easily. In this paper, we presented the CTT tool and
its application to DevOps-oriented load testing and load testing
of data pipelines. Promising future work on CTT comprises the
development of extensions for additional test types and tools.

A SUPPLEMENTARY MATERIAL
The technical deliverables [8, 9, 25] from the RADON project in-
clude additional details about CTT and its lab validation. The source
code of CTT is open-source and available on GitHub [26]. Also,
videos have been produced to show the features and usage of CTT in
the form of a teaser video [27], as well as a webinar recording [28].
An archival version of the artifacts is provided on Zenodo [29].
In addition, the three data pipeline testing datasets (CSV, Images,
JSON) are also available separately on Zenodo [30–32]

ACKNOWLEDGMENT
This paper has been partially supported by the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement No. 825040 (RADON). We thank Andrea Janes from the
Free University of Bozen-Bolzano for his support in integrating
CTT with PPTAM.

REFERENCES
[1] G. Casale et al., “RADON: Rational decomposition and orchestration for serverless

computing,” SICS Software-Intensive Cyber Physical Systems, 2020.
[2] RADON Consortium, “RADON tools,” 2020. [Online]. Available: https:

//github.com/radon-h2020/
[3] Organization for the Advancement of Structured Information Standards

(OASIS), “TOSCA Simple Profile in YAML Version 1.3,” 2019. [Online].
Available: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.
3/TOSCA-Simple-Profile-YAML-v1.3.html

[4] D. D. Nucci, “Deliverable D3.1: RADON methodology,” 2021. [Online].
Available: https://radon-h2020.eu/wp-content/uploads/2021/09/D3.1-RADON-
methodology.pdf

[5] C. K. Dehury, P. Jakovits, S. N. Srirama, G. Giotis, and G. Garg, “TOSCAdata:
Modeling data pipeline applications in tosca,” Journal of Systems and Software,
2022.

[6] S. Kounev et al., “Toward a definition for serverless computing,” Report from
Dagstuhl Seminar 21201, 2021.

[7] L. J. Bass, I. M. Weber, and L. Zhu, DevOps — A Software Architect’s Perspective,
ser. SEI Series in Software Engineering. Addison-Wesley, 2015.

[8] A. van Hoorn and T. F. Düllmann, “Deliverable D3.4: Continuous testing tool I,”
2020. [Online]. Available: https://radon-h2020.eu/wp-content/uploads/2020/07/
D3.4-Continuous-testing-tool-I.pdf

[9] A. van Hoorn et al., “Deliverable D3.5: Continuous testing tool II,” 2021.
[Online]. Available: https://radon-h2020.eu/wp-content/uploads/2021/09/D3.5-
Continuous-testing-tool-II.pdf

[10] M. Wurster et al., “Modeling and Automated Execution of Application Deploy-
ment Tests,” in Proc. of the IEEE 22nd Int. Enterprise Distributed Object Computing
Conf., EDOC. IEEE Computer Society, 2018.

[11] A. U. Gias et al., “Performance engineering for microservices and serverless
applications: The RADON approach,” in Comp. 2020 ACM/SPEC Int. Conf. on
Performance Engineering, ICPE. ACM, 2020.

[12] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-scale software
systems,” IEEE Trans. Software Engineering, 2015.

[13] H. Schulz et al., “Towards automating representative load testing in continu-
ous software engineering,” in Comp. of ACM/SPEC Int. Conf. on Performance
Engineering, ICPE. ACM, 2018.

[14] C. Bezemer et al., “How is performance addressed in devops?” in Proc. of
ACM/SPEC Int. Conf. on Performance Engineering, ICPE. ACM, 2019.

[15] J. Humble and D. Farley, Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

[16] M. Wurster, V. Yussupov, and D. Tamburri, “Deliverable D4.3: RADON Models I,”
2019. [Online]. Available: https://radon-h2020.eu/wp-content/uploads/2019/11/
D4.3-RADON-Models-I.pdf

[17] C. M. Aderaldo et al., “Benchmark requirements for microservices architecture
research,” in 1st IEEE/ACM Int. Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering, ECASE@ICSE. IEEE,
2017.

[18] H. Schulz et al., “Microservice-tailored generation of session-based workload
models for representative load testing,” in 27th IEEE Int. Symp. on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS.
IEEE Computer Society, 2019.

[19] ——, “Context-tailored workload model generation for continuous representative
load testing,” in ACM/SPEC Int. Conf. on Performance Engineering, ICPE. ACM,
2021.

[20] A. Avritzer et al., “Scalability assessment of microservice architecture deployment
configurations: A domain-based approach leveraging operational profiles and
load tests,” Journal of Systems and Software, 2020.

[21] C. Vögele et al., “WESSBAS: extraction of probabilistic workload specifications for
load testing and performance prediction - a model-driven approach for session-
based application systems,” Software and Systems Modeling, 2018.

[22] H. Schulz et al., “Reducing the maintenance effort for parameterization of repre-
sentative load tests using annotations,” Software Testing, Verification & Reliability,
2020.

[23] RADON Consortium, “RADON particles,” 2020. [Online]. Available: https:
//github.com/radon-h2020/radon-particles

[24] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geomet-
ric consistency for large scale image search,” in European Conf. on Computer
Visualization, ECCV. Springer, 2008, pp. 304–317.

[25] V. Yussupov, “Deliverable D6.5: Final Assessment Report,” 2021. [On-
line]. Available: https://radon-h2020.eu/wp-content/uploads/2021/09/D6.5-Final-
Assessment-Report.pdf

[26] Thomas F. Düllmann and André van Hoorn and Pelle Jakovits, “GitHub: RADON
Continuous Testing Tool (CTT).” [Online]. Available: https://github.com/radon-
h2020/radon-ctt

[27] RADON H2020, “RADON 2020 | Continuous Testing Tool,” 7 2021. [Online].
Available: https://www.youtube.com/watch?v=WyLSG9rrpaA

[28] R. H2020, “RADON Webinar 2 | Introduction to Continuous Testing,” 7 2021.
[Online]. Available: https://www.youtube.com/watch?v=DsShmfUih2c

[29] T. F. Düllmann and A. van Hoorn, “RADON Continuous Testing Tool (Final),” 6
2021. [Online]. Available: https://doi.org/10.5281/zenodo.4973131

[30] M. Adhikari, A. Khan, and P. Jakovits, “Data pipeline validation and load testing
using multiple CSV files,” 3 2021.

[31] M. Adhikari, A. Khan, and S. Narayana, “Datapipeline execution validation
and load testing of multiple images,” 6 2020. [Online]. Available: https:
//doi.org/10.5281/zenodo.3884525

[32] M. Adhikari, A. Khan, and P. Jakovits, “Data pipeline validation and
load testing using multiple JSON files,” 3 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.4636789

https://github.com/radon-h2020/
https://github.com/radon-h2020/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://radon-h2020.eu/wp-content/uploads/2021/09/D3.1-RADON-methodology.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D3.1-RADON-methodology.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D3.4-Continuous-testing-tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D3.4-Continuous-testing-tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D3.5-Continuous-testing-tool-II.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D3.5-Continuous-testing-tool-II.pdf
https://radon-h2020.eu/wp-content/uploads/2019/11/D4.3-RADON-Models-I.pdf
https://radon-h2020.eu/wp-content/uploads/2019/11/D4.3-RADON-Models-I.pdf
https://github.com/radon-h2020/radon-particles
https://github.com/radon-h2020/radon-particles
https://radon-h2020.eu/wp-content/uploads/2021/09/D6.5-Final-Assessment-Report.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D6.5-Final-Assessment-Report.pdf
https://github.com/radon-h2020/radon-ctt
https://github.com/radon-h2020/radon-ctt
https://www.youtube.com/watch?v=WyLSG9rrpaA
https://www.youtube.com/watch?v=DsShmfUih2c
https://doi.org/10.5281/zenodo.4973131
https://doi.org/10.5281/zenodo.3884525
https://doi.org/10.5281/zenodo.3884525
https://doi.org/10.5281/zenodo.4636789
https://doi.org/10.5281/zenodo.4636789

	Abstract
	1 Introduction
	2 Background: TOSCA and RADON
	3 Related Work
	4 Continuous Testing Tool
	4.1 Workflow
	4.2 Architecture
	4.3 CTT TOSCA Modeling
	4.4 Extensibility

	5 Validation
	6 Using CTT for DevOps-oriented Load Testing
	7 Using CTT for Data pipeline testing
	8 Conclusion
	A Supplementary Material
	References

